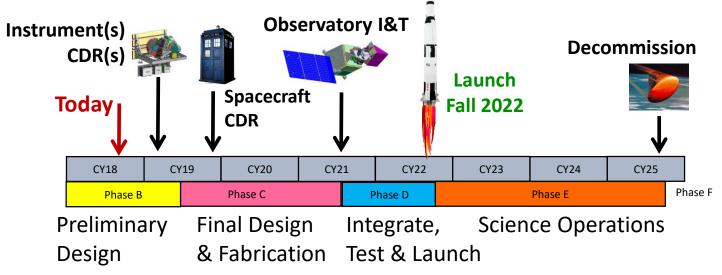


PACE Mission Development

Antonio Mannino antonio.mannino-1@nasa.gov NASA Goddard Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Overview

> Antonio Mannino, Deputy Project Scientist Jeremy Werdell, Project Scientist Paula Bontempi, Program Scientist



"Majority of Americans say a top priority for NASA should be monitoring key parts of the Earth's climate system (63%) ..."

Citation: Pew Research Center, June 2018, "Majority of Americans Believe It is Essential That the U.S. Remain a Global Leader in Space."

PACE Mission characteristics

Key Mission Elements		Key Mission Features	
Mission management	NASA Goddard SFC	Cost	\$805M, DTC
Ocean Color Instrument	NASA Goddard SFC	Life 3-yr, Class C,	
HARP2 polarimeter	UMBC		10-yr fuel
SPEXone polarimeter	SRON (Netherlands)	Orbit	676.5 km, Sun sync, 1-pm
Spacecraft/Mission Ops	NASA Goddard SFC		
Science data processing	NASA Goddard OBPG	Coverage (OCI)	2-day global
Competed science teams	NASA Earth Sciences Div.	RF Communications	Ka direct to ground 600Mbps

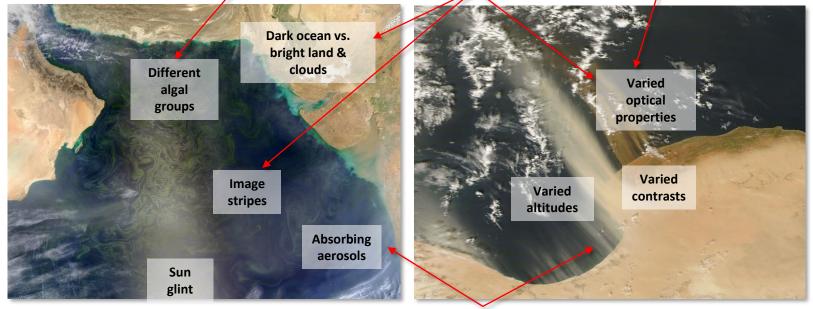
Science Goals, Challenges, & Capabilities of OCI

Extend key systematic ocean biological, ecological, & biogeochemical climate data records, as well as cloud & aerosol climate data records

GSD of $1 \pm 0.1 \text{ km}^2$ at nadir

Tilt ± 20°

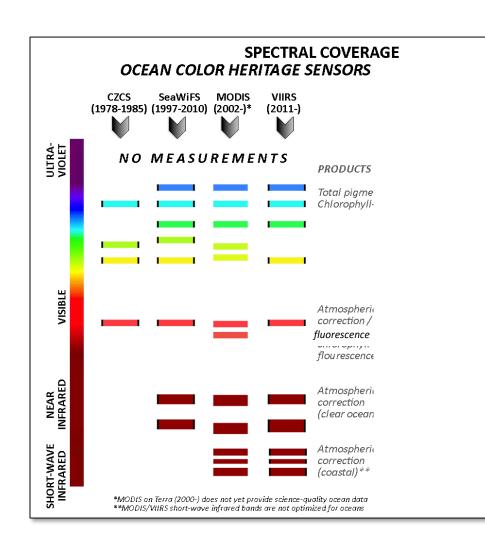
Make **new global measurements** of ocean color that are essential for understanding the global carbon cycle & ocean ecosystem responses to a changing climate

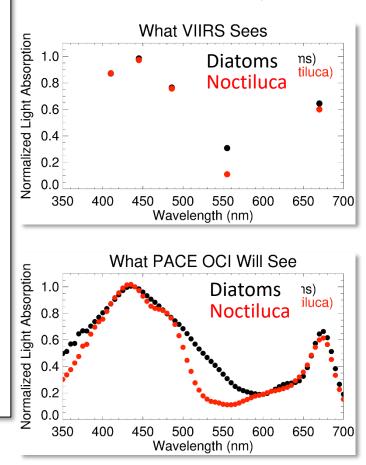

r Spectral range from 350-865 @ 5 nm

Lunar calibration & onboard solar calibration (daily, monthly, dim)

Instrument performance requirements

Collect **global observations of aerosol & cloud properties**, focusing on reducing the largest uncertainties in climate & radiative forcing models of the Earth system


> 940, 1038, 1250, 1378, 1615, 2130, 2260 nm

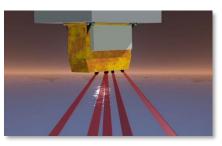

Spectral range goal of 320-865 @ 5 nm

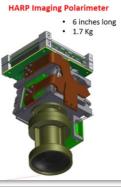
Improve our understanding of how **aerosols influence ocean ecosystems & biogeochemical cycles** and how **ocean biological & photochemical processes affect the atmosphere**

From multi-spectral radiometry to spectroscopy

differentiating between constituents requires additional information relative to what we have today

Multi-Angle Polarimetry on PACE


Two cubesat-sized *contributed* instruments


Spectro-Polarimeter for Planetary Exploration (SPEXone)

Contribution from the Netherlands (SRON, NSO, Airbus; TNO optics)

POC: Otto Hasekamp

Hyperspectral (UV) + narrow swath

Hyper Angular Rainbow Polarimeter (HARP-2)

Contribution from University of Maryland Baltimore County

POC: Vanderlei Martins

Hyperangular + wide swath

	SPEXone	HARP-2
Spectral range (resolution)	385-770 nm (hyperspectral 2 nm)	440, 550, 670 nm (10) + 870 nm (40 nm)
# viewing angles	5 (-52°, -20°, 0°, 20°, 52°)	20 for 440, 550, 870 nm + 60 for 670 nm (114º)
Swath width	9º (100 km)	94º (1550 km)
Ground sample distance	2.5 x 2.5 km	3 x 3 km
Heritage	AirSPEX	AirHARP, cubesat HARP for ISS

Required science data products (OCI)

Required data products & additional expected data products:

Level 1 required (~threshold) products

Water-leaving reflectance	Aerosol optical thickness
Chlorophyll-a	Aerosol fine mode fraction
Phytoplankton absorption	Liquid / ice cloud optical thickness
NAP+CDOM absorption	Liquid / ice cloud effective radius
Particulate backscattering	Cloud layer detection (τ < 0.3)
Diffuse attenuation	Cloud top pressure ($\tau > 3$)
Fluorescence line height	Shortwave radiation effect

Building capabilities to produce this full suite of OCI products from proxy data using preliminary/heritage algorithms by the end of 2018

Advanced & evaluation science data products

Required data products & additional expected data products:

Incomplete list of advanced (~baseline) products

Carbon stocks & fluxes	Liquid / ice cloud water path
Phytoplankton pigments	Polarimeter-specific products
Phytoplankton physiology	Applied sciences-specific products
Community structure (PFTs)	Land data products (TBD)
Productivity	Your very favorite data product that
PAR, light attenuation, water quality	we forgot to list

General expectations for future PACE science teams:

- Novel methods for required products (exploit spectral capabilities)
- Methods for advanced products + scientific applications

Looking forward: applied sciences

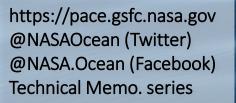
New NASA directive on Applied Sciences within missions

Mission Phase	Applications Activity	
Pre-phase A	 Assessment of the community of practice. Description of potential applications from the PACE data using the requirements established by the Science Definition Team (SDT). 	PACE
Phase A	 Applications website establishment. Database of user community individuals begins. Applications Plan written and posted to website. Applications white papers developed and posted to the website. Applications Traceability Matrices developed and posted to the website. Applications Working Group established. 	
Phase B	 Workshop conducted with targeted science communities to communicate key model, observation and Applied Sciences opportunities and requirements. Newsletters, articles, posters, and other communications developed to expand the community of pote Early Adopters Program 	
Phase C/D	 Annual workshop focu Description of validatic Conference presentative interaction to expand Data workshops, short Interaction with NASA Woody Turner, Maria Tzortziou, Ali Omar A/S Program currently in development	
Phase E	 Documenting decision Newsletter, journal articles, conference presentations of applications of data. Community interaction and support of data reprocessing and improvement. Calibration/validation of data quality, format, issues. Conduct Impact Workshop to assess success of Applications implementation. Conduct a Quantitative PACE Data Societal Benefit Value Assessment. Information for Senior Review Submissions. 	Dordinator: TBD Applications Lead - Atmosphere, ³ NASA HOS PACE Deputy Program Applications Lead - Atmosphere, ³ NASA HOS PACE Program Applications Lead, ⁴ NASA PACE Pro Scientist, ⁵ NASA PACE Deputy Project Scientist - Oceans, ⁴ PACE Project Communications Team. We program Applications Lead - Atmosphere, ³ NASA HOS PACE Project Communications Team.

Learn more about PACE

PACE's advanced technologies will provide unprecedented insight into Earth's ocean and atmosphere, which impact our everyday inves by regulating climate and making our planet habitable. Our oceans teem with this, supporting many of Earth's economies. New discoveries in Earth's lange ocean will be revealed with PACE's global observations, such as the diversity of organism's fuelling marine food webs and how ecosystems respond to environmental honge. PACE will observe our atmosphere to study clouds along with the try airborne particles known as aerosols. Looking at the ocean, clouds, and aerosols together will improve our knowledge of the roles each plays in our hanging planet.

PACE's data will reveal interactions between the ocean and atmosphere, including how they exchange carbon dioxide and how atmospheric aerosios might fuel phytoplanton growth in the surface ocean. Novel uses of PAC data - from identifying the extert and utation of harmful algibilismons to improving our understanding of air quality – will result in direct economic and societal benefits. By extending and expanding NASA's long record of satellite observations of our living planet, we will take Earth's puble in new ways for decades to come.

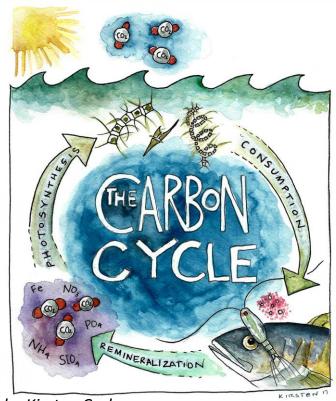


NASA's long-term chlorophyll record is unparalleled

Why Do We Need PACE?

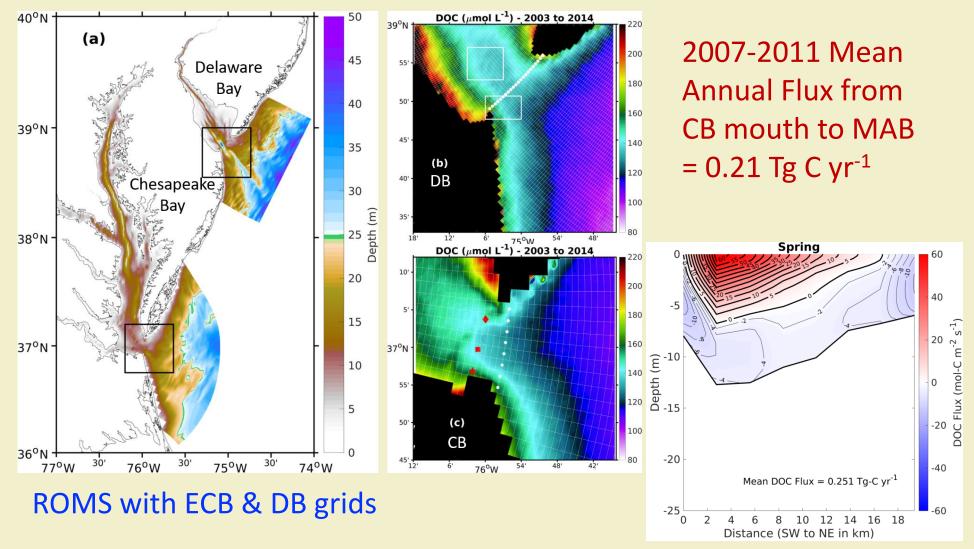
Ocean Ecology Aerosols & Clouds Carbon Applied Sciences Economy & Society Science Question

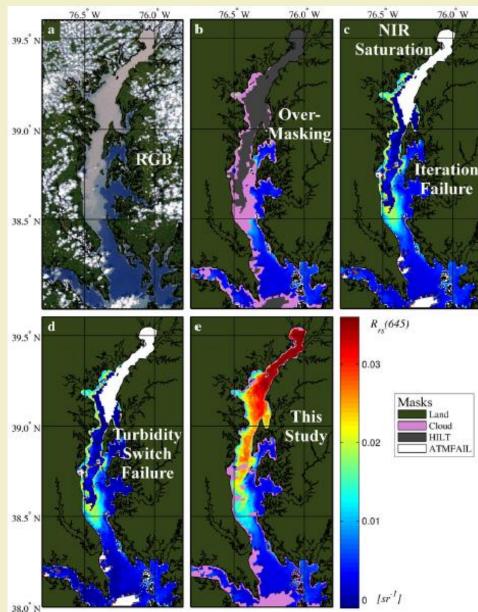
Our ocean teems with life and many of its most vital species are invisible to us. Like on land, the ocean has deserts, forests, meadows, and jungles, providing habitats for many forms of life. The types of life in these habitats is determined by microscopic algae that float in our ocean. Known as "hybroplanktor," there tiny organisms come in many different shapes, sizes, and colors. The diversity of phytoplanktor, bypes determines how well they capture energy from the sun and carbon from the atmosphere.



d More

Chesapeake Bay Research Activities abridged version


Antonio Mannino, NASA GSFC and many others


by Kirsten Carlson

DOC Fluxes from Chesapeake Bay and Delaware Bay from Satellite DOC and Estuarine Model Physics

Signorini, Mannino et al. in prep.

Improved Coverage and Data Quality for

Turbid Waters

- Improved masking in high turbidity waters
- Applied SWIR bands to enable turbid water retrievals

MODIS image from Sept. 11, 2011 following Hurricane Irene and Tropical Storm Lee

Future Plans

- Satellite- and ROMS-based Carbon budget for lower Chesapeake Bay and Middle Atlantic Bight
 - POC, DOC and DIC
 - fluxes, standing stocks and Net Community Production
 - Terrestrial DOM fluxes
- Satellite-derived Phytoplankton community composition for Chesapeake Bay (lower) and Middle Atlantic Bight
- Potentially Satellite-derived water quality parameters
- Improvements in data products with PACE (2024)